As examples we mention $y^3 - x^4 = 0$, $y^3 - x^5 = 0$, and $[y-1+(1-x^2)^{1/2}]^2 - x^5 = 0$ with the determination of $(1-x^2)^{1/2}$ which equals 1 when x = 0. These give respectively, at the origin, a minimum, a point of inflection, and a cusp with both branches concave upward. In none of the three cases is y analytic in x at the origin. An example where the locus is a single point is given by y+ix=0.

In the case of a reducible function f(x, y), the real locus f(x, y) = 0 neighboring (x_0, y_0) consists of a finite number of configurations of the kind described in the theorem, no two of which have any point except (x_0, y_0) in common. This is easily proved by use of theorems on resultants and on divisibility of one function by another. Of course two irreducible factors may have exactly the same locus.

COLUMBIA UNIVERSITY

A PARTIAL DIFFERENTIAL EQUATION CONNECTED WITH THE FUNCTIONS OF THE PARABOLIC CYLINDER*

BY HARRY BATEMAN

The partial differential equation

(1)
$$\sum_{s=1}^{p} \left(\frac{\partial^2 V}{\partial x_s^2} - x_s \frac{\partial V}{\partial x_s} \right) + \nu V = 0,$$

which was considered by Mehler[†] in 1866, is a slight modification of an equation which occurs in wave-mechanics in the theory of the rotator in a plane and in space.[‡] The case in which ν is a positive integer is then of chief physical interest and Mehler's simple solution

(2)
$$V = \prod_{s=1}^{p} H_{m_s}(x_s), \qquad \sum_{s=1}^{p} m_s = \nu,$$

acquires a physical significance. The function $H_m(x)$ is the polynomial of Laplace and Hermite defined by the equation

^{*} Presented to the Society, December 2, 1933.

[†] F. G. Mehler, Journal für Mathematik, vol. 66 (1866), p. 161.

[‡] A. Sommerfeld, Atombau und Spektrallinien, wellenmechanischer Ergänzungsband, 1929, p. 23.