[December,

(25)
$$E\{(x_1 - a_1)^k (x_2 - a_2)^l \cdots (x_r - a_r)^m\} = (p_1 e^{D_1} + p_2 e^{D_2} + \cdots + p_r e^{D_r})^n \cdot x_1^k x_2^l \cdots x_r^m \bigg|_{x_r = -a_r}^{x_1 = -a_1}$$

where $D_1 = \partial / \partial x_1$.

WASHINGTON, D. C.

ON A RESULTANT CONNECTED WITH FERMAT'S LAST THEOREM

BY EMMA LEHMER

E. Wendt* seems to have been the first to introduce the resultant of $x^n = 1$ and $(x+1)^n = 1$ in connection with Fermat's Last Theorem. This resultant can be expressed by means of the following circulant of binomial coefficients

 $\Delta_n = \begin{vmatrix} 1 & C_{n,1} & C_{n,2} & \cdots & C_{n,n-1} \\ C_{n,n-1} & 1 & C_{n,1} & \cdots & C_{n,n-2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ C_{n,1} & C_{n,2} & C_{n,3} & \cdots & 1 \end{vmatrix}.$

In his book on Fermat's Last Theorem Bachmann[†] proved that if p is an odd prime and if Δ_{p-1} is not divisible by p^3 , then Fermat's equation $x^p + y^p + z^p = 0$ has no solution (x, y, z) prime to p.

S. Lubelsky‡ proved in a recent paper, using the distribution of quadratic residues, that if $p \ge 7$, Δ_{p-1} is not only divisible by p^3 , but by p^8 , thus annulling Bachmann's criterion except for p=3 and p=5.

We shall now show how, by a straightforward manipulation with the above determinant, one can prove much more.

THEOREM 1. Δ_{p-1} is divisible by $p^{p-2}q_2$ for every prime p, where q_2 is the Fermat quotient $(2^{p-1}-1)/p$.

864

^{*} Journal für Mathematik, vol. 113 (1894), pp. 335-347.

[†] Das Fermatproblem, 1919, p. 59.

[‡] Prace Matematyczno-Fizyczne, vol. 42 (1935), pp. 11-44.