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statement is obviously true; if U\ lies in [Ui], A = U\U?P\Ui 
and, since UfPiUi is a positive hermitian matrix of rank r, 
U?PiUi = P2 and Ui lies in [U2]* Similarly any member V2 of 
[U2] lies in [Ui]. Further the matrix P2 is invariant under uni
tary transformation by any matrix of the group Gi, and Pi under 
transformation by any matrix of the group G2. For if Z\ lies 
in Gi, AZi—A so that A = Z72ZiZi*P2Zi, and accordingly, 
ZfPzZ^P*. 

THE JOHNS HOPKINS UNIVERSITY 

ON A THEOREM OF FÉRAUD 

BY D. C. LEWIS, JR.* 

The Birkhoff-Pfaffian equations of dynamics are written in 
variational form as follows : 

8J"[!x-(?£)+e>'-0' 
where Q and the X's are functions of Xi, • • • , x^m and, in general, 
depend also periodically upon /, and where the skew-symmetric 
determinant \ai3'\, {aij — dXi/dXj — dXj/dXi), does not vanish 
in the regions considered. We restrict attention to the neighbor
hood of a generalized equilibrium point, that is, a point where 
all the dQ/dXi—dXi/dt vanish identically in t. We take this 
point at the origin, x t = 0 , (i=*l, 2, • • • , 2m). 

The problem of reducing the Pfaffian system to a Hamiltonian 
system can be reduced to that of finding a non-singular trans
formation, Xi=*x%(yi, • • • , y2m), leaving the origin invariant 
(and depending in general periodically upon /) which reduces 
the linear differential formal™! X{dx{ to the form X]£-i yndyu-i 
+dw, where dw is an exact differential in yit • • • , y2m, the coef
ficients of which are independent of t. This same problem also 
will play an important role in a future paper of mine on "con
servative" transformations in 2ra-dimensional spaces. 

The problem has been considered by Feraud,f who obtained a 
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relative aux systèmes Pfaffiens, Comptes Rendus, vol. 190 (1930), pp. 358-360. 


