ON THE EXPANSION COEFFICIENTS OF THE FUNCTIONS $u/\sin u$ AND $u^2/\sin^2 u$ †

BY R. D. JAMES!

1. Introduction. It is well known that the elliptic function $\operatorname{sn}(u, k)$ may be expanded in the form

$$\operatorname{sn}(u, k) = \sum_{n=0}^{\infty} \frac{u^n}{n!} S_n(k^2),$$

where

(1)
$$S_0(k^2) = 0$$
, $S_1(k^2) = 1$, $S_n(k^2) = \sum_{r=0}^{\lfloor (n-1)/2 \rfloor} s_r(n) k^{2r}$, $(n \ge 2)$.

Moreover, $s_r(2j) = 0$ for all values of r and j, and $s_r(2j+1)$ is an integer > 0 for $0 \le r \le j$. Similarly we have

(2)
$$\frac{u}{\operatorname{sn}(u,k)} = \sum_{n=0}^{\infty} \frac{u^n}{n!} G_n(k^2),$$

where

$$G_0(k^2) = 1, \qquad G_n(k^2) = \sum_{r=0}^{\lfloor n/2 \rfloor} g_r(n) k^{2r}, \qquad (n \ge 1),$$

with $g_r(2j+1) = 0$ for all values of r and j, and $g_r(2j) \neq 0$ for $0 \leq r \leq j$. In particular

(3)
$$g_0(2) = g_1(2) = 1/3.$$

Again,

(4)
$$\frac{u^2}{\operatorname{sn}^2(u, k)} = \frac{1}{2} k^2 u^2 + \sum_{n=0}^{\infty} \frac{u^n}{n!} T_n(k^2),$$

where

$$T_0(k^2) = 1, T_n(k^2) = \sum_{r=0}^{\lfloor n/2 \rfloor} t_r(n) k^{2r}, (n \ge 1),$$

with $t_r(2j+1)=0$ for all r and j, and $t_r(2j)\neq 0$ for $0\leq r\leq j$. In particular,

(5)
$$t_0(2) = 2/3$$
, $t_1(2) = -1/3$, $t_0(4) = -t_1(4) = t_2(4) = 8/5$.

[†] Presented to the Society, March 30, 1934.

[‡] National Research Fellow.