ON THE LATTICE THEORY OF IDEALS†

BY GARRETT BIRKHOFF

1. *Outline*. The ideals of any ring define, relative to g.c.f. and l.c.m., a combinatorial system having properties which we shall presently define as characterizing *B-lattices*.

In this article we shall first develop some new properties of *B*-lattices as abstract systems; the main results of this part of the work find expression in Theorems 1–5. Then we shall apply this theory and some older results to the ideals of commutative rings *R* which possess a principal unit *l* and satisfy the Basis Theorem. In addition to developing the known theory of *einartig* ideals by combinatory methods, we give a necessary and sufficient condition that the *B-lattice* defined by the ideals of *R* should be isomorphic with a *ring* of point sets in the sense of Hausdorff.‡

2. Notation; Lattice Algebras. We shall in general use capital letters to denote systems, and small letters for elements. $a \in A$ will mean "a is an element of the system A"; $B \subset A$ will mean " $b \in B$ implies $b \in A$ "; B < A will mean $B \subset A$ but $B \ne A$.

By a *lattice algebra* will be meant any system L which satisfies the following postulates:

- (L1). Any $a \in L$ and $b \in L$ determine a unique "join" $a \cap b \in L$ and a unique "meet" $(a, b) \in L$.
- (L2). $a \cap b = b \cap a$ and (a, b) = (b, a) for any $a \in L$ and $b \in L$.
- (L3). $a \cap (b \cap c) = (a \cap b) \cap c$ and (a, (b, c)) = ((a, b), c) for any $a \in L, b \in L$, and $c \in L$.
- (L4). $a \cap (a, b) = a$ and $(a, a \cap b) = a$ for any $a \in L$ and $b \in L$.

From (L1)–(L4) follow $a \cap a = (a, a) = a$. Moreover $a \cap b = b$ is equivalent to (a, b) = a; in this case we write $a \subset b$ or $b \supset a$, and $a \subset b$ taken with $b \subset c$ implies $a \subset c$. Moreover, a < b means $a \subset b$ but $a \neq b$, while "b covers a" means a < b, but that no $x \in L$ satisfies a < x < b.

The reader may find it helpful to regard lattices as distorted

[†] Presented to the Society, March 30, 1934.

[‡] Hausdorff, Mengenlehre, 1927, p. 77.