and curvature types of triply infinite families of curves. The reresults are summarized in the following table; the two types compared are named in the left-hand column; their intersection is identified in the center; and the number, that is, the infinitude, of (projectively different) common families is given at the right.

Dynamical Sectional: Special central fields or $\infty^{f(1)}$

General cones

Dynamical Curvature: Any central field $\infty^{f(2)}$

Sectional Curvature: General cones and

Quadric surfaces $\infty^{f(1)+2}$

The 2 in the exponent of ∞ refers of course to two arbitrary constants, while (according to a notation which I proposed in this Bulletin in 1912, in a review of Riquier's treatise on partial differential equations) f(1) means an arbitrary function of one independent variable, and f(2) an arbitrary function of two independent variables.

COLUMBIA UNIVERSITY

ON NEVANLINNA'S WEAK SUMMATION METHOD†

BY A. F. MOURSUND

1. Introduction. Our principal object in this note is to discuss the function

(1)
$$\rho_n(\beta) = \frac{2}{\pi} \int_0^{\pi/2} \left| \int_0^1 \beta (\log C)^{\beta} (1-t)^{-1} (\log C/(1-t))^{-\beta-1} \times \frac{\sin (2nt+1)s}{\sin s} dt \right| ds,$$

which, for $\beta > 0$ and the "dummy" constant $C \ge e^{\beta+1}$, plays a role in the theory of summation of Fourier series by Nevanlinna's weak method‡ analogous to the role the Lebesgue constants

[†] Presented to the Society, June 20, 1934.

[‡] F. Nevanlinna, Über die Summation der Fourier'schen Reihen und Integrale, Översikt av Finska Vetenskaps-Societetens Förhandlingar, vol. 64 (1921–22), A, No. 3, 14 pp. A. F. Moursund, On the Nevanlinna and Bosanquet-Linfoot summation methods, Annals of Mathematics, (2), to appear.