AN INVOLUTORIAL LINE TRANSFORMATION*

BY J. M. CLARKSON

1. Introduction. Consider a non-singular quadric H, a plane π not tangent to H, and a point O on H but not on π . In the plane π take a Cremona involutorial transformation I_n of order n with fundamental points in general position (not necessarily on the curve of intersection of π and H). Project H from O upon π by the projection P. The point transformation PI_nP^{-1} is involutorial and leaves H invariant as a whole. A point A on $H\sim(P)$ B on π ; $\dagger B\sim(I_n)$ B'; $B'\sim(P^{-1})$ A' on H. Now an arbitrary line t, with Plücker coordinates y_i , $(i=1, \cdots, 6)$, meets H in two points A_1 , A_2 which $\sim(PI_nP^{-1})$ A'_1 , A'_2 . The line $A'_1A'_2 \equiv t'$ shall be called the conjugate of t by the line transformation PI_nP^{-1} is involutorial, so will the line transformation T be involutorial.

2. Order of the Transformation T. The coordinates of the points A_1 , A_2 in which t meets H are quadratic functions of y_i ; the coordinates of B_1 , B_2 are linear in the coordinates of A_1 , A_2 and hence are also quadratic functions of y_i ; the coordinates of B_1' , B_2' are functions of degree n in the coordinates of B_1 , B_2 and are therefore functions of degree 2n in y_i ; finally A_1' , A_2' have coordinates of degree 2n in y_i . The Plücker coordinates of a line are quadratic functions of the coordinates of two points which determine the line, and hence the Plücker coordinates x_i of t' are of degree 4n in y_i . Thus T is of order 4n.

3. The Singular Lines of T. Denote by O_1 , O_2 the points where the generators g_1 , g_2 of H through O meet π . The points O_1 , $O_2 \sim (I_n)O'_1$, $O'_2 \sim (P^{-1})Q_1$, Q_2 . The line $t \equiv Q_1Q_2 \sim (T)$ the entire plane field of lines (g_1g_2) , since O_1 , $O_2 \sim (P^{-1})g_1$, g_2 .

Any line t tangent to H meets H in two points coincident at A. The point $A \sim (PI_nP^{-1}) A'$, and hence $t \sim (T)$ the pencil of tangents to H at A'.

Since $O \sim (P)$ the whole line $O_1 O_2 \sim (I_n)$ a curve ρ of order

^{*} Presented to the Society, October 28, 1933.

[†] The symbol $\sim (P)$ means "corresponds in the transformation P to."