CESÀRO SUMMABILITY OF DOUBLE SERIES

BY MARGARET GURNEY

1. Definitions and Notation. The familiar Cesàro transform of a double series $\sum_{i,j,=1}^{\infty} u_{ij}$ is given by

(1)
$$\widetilde{S}_{mn}^{(\alpha,\beta)} = S_{mn}^{(\alpha,\beta)} / \left[\binom{m+\alpha-1}{\alpha} \binom{n+\beta-1}{\beta} \right],$$

where

(2)
$$S_{mn}^{(\alpha,\beta)} = \sum_{i,j=1}^{m,n} \binom{m+\alpha-i}{\alpha} \binom{n+\beta-j}{\beta} u_{ij}.$$

The series $\sum_{m,n\to\infty} u_{ij}$ is said to be summable $(C; \alpha, \beta)$ to S if we have $\lim_{m,n\to\infty} \tilde{S}^{(\alpha,\beta)}_{mn} = S$; to be bounded $(C; \alpha, \beta)$ if $|\tilde{S}^{(\alpha,\beta)}_{mn}| < \text{const. for all values of <math>m$ and n; and to be ultimately bounded $(C; \alpha, \beta)$ if $\lim_{m \to \infty} |\tilde{S}^{(\alpha,\beta)}_{mn}| < \infty$. This definition holds for all values of α and β , real or complex, except negative integers, the binomial coefficients being defined as usual in terms of the gamma function; however we shall be concerned only with real orders greater than -1.

A special but important type of double series is that for which u_{ij} is factorable, say

(3)
$$u_{ij} = v_i w_j, \qquad (i, j = 1, 2, 3, \cdots).$$

Defining

(4)
$$V_m^{(\alpha)} = \sum_{i=1}^m \binom{m+\alpha-i}{\alpha} v_i; \ W_n^{(\beta)} = \sum_{j=1}^n \binom{n+\beta-j}{\beta} w_j,$$

we have, by (2), when (3) holds, $S_{mn}^{(\alpha,\beta)} = V_m^{(\alpha)} W_n^{(\beta)}$, so that, by (1),

(5)
$$\widetilde{S}_{mn}^{(\alpha,\beta)} = \widetilde{V}_m^{(\alpha)} \widetilde{W}_n^{(\beta)},$$

where the factors in the right member of (5) are, respectively, the (C, α) transform of $\sum v_i$ and the (C, β) transform of $\sum w_i$.

2. *Examples*. The relation (5) enables us to obtain very easily examples illustrating the following statements.