ON THE RELATIONSHIP AMONG THE DIAGONAL FILES OF A PADÉ TABLE*

BY H. S. WALL

1. Introduction. The object of the following note is to investigate the relationship among the nth approximants of the different diagonal files of a Padé table; and to study the relationship among the limits of those files for a Stieltjes power series, in the case \dagger that those files have different limits. We have found that an arbitrary file S_k converges to an expression of the form

$$\frac{\alpha_k p - \beta_k p_1}{\alpha_k q - \beta_k q_1},$$

where p, p_1 , q, q_1 are entire transcendental functions independent of k, and α_k , β_k are polynomials or constants. If we denote by u_k , v_k the numerator and denominator, respectively, of (1), then if k', k'' are two values of the index k, the following identity obtains:

$$(2) u_{k'}v_{k''} - u_{k''}v_{k'} = \alpha_{k'}\beta_{k''} - \alpha_{k''}\beta_{k'};$$

and the polynomial on the right is not identically zero if $k' \neq k''$.

2. Preliminary Formulas.‡ Let $\mathfrak{P}(x) = \sum_{v=0}^{\infty} c_v(-x)^v$ be a normal power series, and let $\mathfrak{E}(x) = \sum_{v=0}^{\infty} d_v(-x)^v$ be the reciprocal of $\mathfrak{P}(x)$. Set $\mathfrak{P}^{(k)}(x) = \sum_{v=0}^{\infty} c_{v+k}(-x)^v$, $\mathfrak{E}^{(k)}(x) = \sum_{v=0}^{\infty} d_{v+k}(-x)^v$, $k=0,1,2,\cdots$. Then the series $\mathfrak{P}^{(k)}(x)$, $\mathfrak{E}^{(k)}(x)$ have corresponding continued fractions

$$\frac{1}{a_1^{(k)}} + \frac{x}{a_2^{(k)}} + \frac{x}{a_3^{(k)}} + \cdots , \frac{1}{b_1^{(k)}} + \frac{x}{b_2^{(k)}} + \frac{x}{b_3^{(k)}} + \cdots ,$$

respectively, where the numbers $a_n^{(k)}$, $b_n^{(k)}$ are different from 0.

^{*} Presented to the Society, September 12, 1930.

[†] Designated as "Case I" in the writer's paper, On the Padé approximants associated with the continued fraction and series of Stieltjes, Transactions of this Society, vol. 31 (1929), pp. 91-116. We show in the present article that no two of the diagonal files have the same limit, thus supplementing the earlier result.

[‡] For details concerning the statements in this paragraph, see a paper by the writer in the Transactions of this Society, vol. 33 (1931), pp. 511-532.