ON THE ZEROS OF CERTAIN POLYNOMIALS RELATED TO JACOBI AND LAGUERRE POLYNOMIALS*

BY W. LAWTON[†]

1. Introduction. We consider the polynomials defined as follows:

(1)
$$J_n(x, \alpha, \beta) \equiv x^{1-\alpha}(1-x)^{1-\beta} \frac{d^n}{dx^n} [x^{n+\alpha-1}(1-x)^{n+\beta-1}],$$

(2)
$$L_n(x, \alpha) \equiv x^{1-\alpha} e^x \frac{d^n}{dx^n} [e^{-x} x^{n+\alpha-1}],$$

where α and β are arbitrary real numbers. If α , $\beta > 0$, they are known respectively as Jacobi and Laguerre polynomials, satisfying the following orthogonality relations:

$$\int_{0}^{1} x^{\alpha-1} (1-x)^{\beta-1} J_{m}(x) J_{n}(x) dx = 0,$$

$$\int_{0}^{\infty} e^{-x} x^{\alpha-1} L_{n}(x) L_{m}(x) dx = 0,$$

$$(\alpha, \beta > 0; m, n = 0, 1, \dots; m \neq n).$$

From these relations it can be shown that all the zeros of the functions $J_x(x, \alpha, \beta)$ and $L_n(x, \alpha)$ are real, distinct, and lie respectively inside $(0, 1), (0, \infty)$.

The following differential equations are also well known:

(3)
$$x(1-x)J_{n'}'(x,\alpha,\beta) + \{\alpha - (\alpha + \beta)x\}J_{n}'(x,\alpha,\beta) + n(n-1+\alpha+\beta)J_{n} = 0, \qquad (\alpha,\beta > 0),$$

(4)
$$xL_n''(x, \alpha) + (\alpha - x)L_n'(x, \alpha) + nL_n(x, \alpha) = 0.$$

Since (3) and (4) represent identical relations between the coefficients of $J_n(x, \alpha, \beta)$ and $L_n(x, \alpha)$ respectively which are polynomials in α , β or in α respectively, we conclude that the differential equations still hold, if $\alpha, \beta \leq 0$.

^{*} Presented to the Society, March 26, 1932.

[†] Harrison Fellow in Mathematics, University of Pennsylvania.