A TRIAD OF RULED SURFACES DEFINED BY RECIPROCAL POLARS*

BY A. F. CARPENTER

As an application of the theory of triads of ruled surfaces \dagger in projective differential geometry, we shall consider here a system defined as follows. Let l_{yz} be any line element of a general ruled surface R_{yz} , the points P_y , P_z being the flecnodes of l_{yz} . The defining system of differential equations for R_{yz} will have the form

(1)
$$y'' + p_{12}z' + q_{11}y + q_{12}z = 0, z'' + p_{21}y' + q_{21}y + q_{22}z = 0,$$

where differentiation is with respect to a parameter x and where $p_{12}' = 2q_{12}$, $p_{21}' = 2q_{21}$.

The planes osculating the flecnode curve C of R_{yz} at P_y , P_z intersect in a line $l_{\psi\phi}$, the points P_{ψ} , P_{ϕ} of which are those in which $l_{\psi\phi}$ is cut by the tangents to C at the respective points P_z , P_y . The expressions for ψ , ϕ are

(2)
$$\psi = p_{12}z' + q_{12}z, \quad \phi = p_{21}y' + q_{21}y.$$

The polar reciprocal of $l_{\psi\phi}$ with respect to the linear complex which osculates R_{yz} along l_{yz} is the line $l_{\eta\theta}$, the points P_{η} , P_{θ} of which are given by the expressions

(3)
$$\eta = p_{12}z' + p_{12}p_{21}y + q_{12}z, \quad \theta = p_{21}y' + q_{21}y + p_{12}p_{21}z.$$

The points P_y , P_{ψ} , P_{η} are collinear, as are also the points P_z , P_{ϕ} , P_{θ} .

A set of three lines l_{yz} , $l_{\psi\phi}$, $l_{\eta\theta}$, as thus defined, corresponds to each value of the parameter x and determines in this way three ruled surfaces R_{yz} , $R_{\psi\phi}$, $R_{\eta\theta}$. From (1), (2) and (3) we obtain the defining system of differential equations for this triad of ruled surfaces.[‡] It is

^{*} Presented to the Society, June 13, 1931.

[†] A. F. Carpenter, *Triads of ruled surfaces*, Transactions of this Society, vol. 29 (1927), pp. 254–275. Hereafter denoted by the symbol T.

[‡] T, p. 256.