ON COMPLEX METHODS OF SUMMABILITY*

BY R. P. AGNEW†

1. Introduction. When a method of summability‡ evaluates a complex sequence $\{s_n\}$ to L, it is of interest to know if that method evaluates $\{\mathcal{R}(s_n)\}$ to $\mathcal{R}(L)$, if it evaluates $\{\mathcal{J}(s_n)\}$ to $\mathcal{J}(L)$, and if it evaluates $\{\bar{s}_n\}$ to \overline{L} .§ For linear methods of summability, these three questions are easily shown to be equivalent.

To simplify our discussion, we introduce the two following definitions. A method of summability has property A if, corresponding to each sequence $\{s_n\}$ which it evaluates, the sequence $\{R(s_n)\}$ is evaluated to the real part of the value of $\{s_n\}$. A method of summability has property B if, corresponding to each bounded sequence $\{s_n\}$ which it evaluates, the sequence $\{R(s_n)\}$ is evaluated to the real part of the value of $\{s_n\}$.

2. Failure of Property B. That a linear regular method may fail to have property B, and hence a fortiori fail to have property A, follows easily from a consideration of the transformation¶

(1)
$$\sigma_n = \frac{1}{2} [1 - (-1)^n i] s_{n-1} + \frac{1}{2} [1 + (-1)^n i] s_n$$

which assigns to a given sequence $\{s_n\}$ the value $\lim \sigma_n$ when this limit exists. The bounded sequence $\{x_n\}$ defined by $x_n = 1 + (-1)^n i$ is evaluated to 0 by (1); but $\{\mathcal{R}(x_n)\}$ is evaluated to 1, $\{\mathcal{I}(x_n)\}$ is evaluated to -1, and $\{\bar{x}_n\}$ is evaluated to 2. This

^{*} Presented to the Society, June 13, 1931.

[†] National Research Fellow.

[‡] By a method of summability, we mean simply a rule which assigns to each given sequence (or series) of complex numbers either no value or a single value. For example, if we agree to assign to the complex sequence $\{s_n\}$, where $s_n = u_n + iv_n$, u_n and v_n real, the value 3+4i if $v_n \neq 0$ for some n and the value 3 if $v_n = 0$ for all n, we have a method of summability.

[§] If w=u+iv, where u and v are real, we use $\mathcal{R}(w)$, $\mathcal{J}(w)$, and \overline{w} to denote respectively u, iv, and the conjugate u-iv of w.

^{||} For definitions of *linearity*, regularity, etc., and for necessary and sufficient conditions for regularity, see an expository paper by W. A. Hurwitz, this Bulletin, vol. 28 (1922), pp. 17-36, and the references there given.

[¶] Corresponding to a given sequence s_1, s_2, s_3, \cdots , we define $s_0 = 0$.