SOME THEOREMS ON PLANE CURVES

BY W. V. PARKER

In applying Abel's theorem to hyperelliptic integrals, we are interested in the intersections of certain curves with a curve C of the type $y^2 = f(x)$, where f(x) is a polynomial. The functions used in the following are all polynomials of degree indicated by their subscripts. If $f_n(x) \equiv f_k(x) f_{n-k}(x)$ we may without any loss of generality assume that $n \ge k \ge n/2$ and this assumption will be made throughout.

LEMMA. If C is the curve $y^2 = f_n(x) \equiv f_k(x) f_{n-k}(x)$, c_1 the curve $y = f_k(x)$ and c_2 the curve $y = f_{n-k}(x)$, then all the finite points of intersection of c_1 and c_2 are on C, and the curve S whose equation is $y = [f_k(x) + f_{n-k}(x)]/2$ is tangent to C at each of these k points.

Suppose (α, β) is any one of the k points of intersection of c_1 and c_2 ; then $\beta = f_k(\alpha)$ and $\beta = f_{n-k}(\alpha)$ and therefore $\beta^2 = f_k(\alpha)f_{n-k}(\alpha) = f_n(\alpha)$, that is (α, β) is on C. Obviously S passes through the k points of interesection of c_1 and c_2 and hence meets C in these k points. Eliminating p from the equations of p and p we get

$$\left[\frac{f_k(x) + f_{n-k}(x)}{2}\right]^2 - f_k(x)f_{n-k}(x) \equiv \left[\frac{f_k(x) - f_{n-k}(x)}{2}\right]^2 = 0$$

as the equation giving the abscissas of the 2k points of intersection of S and C. Since the left hand side of this equation is a perfect square each abscissa is counted twice, and therefore since, in S, y is a one-valued function of x, S is tangent to C at each of these k points.

As an immediate consequence of this lemma we have the following result.

THEOREM 1. If C is the curve $y^2 = \phi_n(x)$, where $\phi_n(e_i) = 0$, $(i = 1, \dots, n)$, and (α, β) , $(\beta \neq 0)$, is a point on C, and c_1 is the curve of the form $y = \phi_k(x)$ determined by (α, β) and any k of the points $(e_i, 0)$, and c_2 is the curve of the form $y = \phi_{n-k}(x)$ determined by (α, β) and the remaining n-k of the points $(e_i, 0)$, then c_1 and