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A NOTE CONCERNING CACTOIDS* 

BY J. H. ROBERTS f 

A cactoidX M is a bounded continuous curve lying in space of 
three dimensions and such that (a) every maximal cyclic curve § 
of M is a simple closed surface and (b) no point of M lies in a 
bounded complementary domain of any subcontinuum of M. 
There exists a bounded acyclicj| continuous curve C such that 
every bounded acyclic continuous curve is homeomorphic with 
a subset of C. Now Whyburn has shown^f that with respect 
to its cyclic elements every continuous curve is acyclic. More
over the cyclic elements of a cactoid are either points or topo
logical spheres. Thus this question naturally arises: Does 
there exist a cactoid C such that every cactoid is homeomorphic 
with a subset of C? The object of the present paper is to 
answer this question negatively. 

THEOREM 1. There does not exist a cactoid C such that every 
cactoid is homeomorphic with a subset of C. 

PROOF. Let g be any infinite set of distinct positive integers 
du dï> ds, - - • • Let K denote a non-dense perfect point set on 
the interval 0 g x ^ 1 containing the end points of this in
terval. The complementary segments of K can be labeled 
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