NEW CRITERIA ASSOCIATED WITH FERMAT'S LAST THEOREM*

BY JOHN MCDONNELL
Furtwängler has obtained* by means of Eisenstein's law of reciprocity for residues of p th powers, p an odd prime, certain criteria in connection with the solution of the equation

$$
\begin{equation*}
x^{p}+y^{p}+z^{p}=0, \tag{1}
\end{equation*}
$$

where x, y, z are relatively prime rational integers, and these criteria involve the rational factors of $x, y, z, y-z, z-x, x-y$.

It is the object of the present article to employ the same method to derive similar criteria for the factors of

$$
x^{2}-y z, y^{2}-z x, z^{2}-x y, x^{2}+y z, y^{2}+z x, z^{2}+x y .
$$

Theorem 1. If x, y, z satisfy equation (1), $y z+z x+x y$ is prime to p, and r is any factor of $x^{2}-y z$, then $r^{p-1} \equiv 1\left(\bmod p^{2}\right)$.

Proof. Let α be a p th root of unity. We have from the identity

$$
x(x+y \alpha)-y(z+x \alpha)=x^{2}-y z
$$

the equation in p th power characters

$$
\left\{\frac{x(x+y \alpha)}{r}\right\}=\left\{\frac{y(z+x \alpha)}{r}\right\}
$$

or, since

$$
\left\{\frac{x}{r}\right\}=\left\{\frac{y}{r}\right\}=1
$$

x and y being rational, we have

$$
\begin{equation*}
\left\{\frac{x+y \alpha}{r}\right\}=\left\{\frac{z+x \alpha}{r}\right\} \tag{2}
\end{equation*}
$$

[^0]
[^0]: * Presented to the Society, August 29, 1929.
 \dagger Wiener Sitzungsberichte, vol. 121, IIa (1912), pp. 589-592.

