INVERSE CORRESPONDENCES IN AUTOMORPHISMS OF ABELIAN GROUPS*

BY G. A. MILLER

The totality of the operators which correspond to their inverses in an automorphism of an abelian group G obviously constitutes a subgroup of G. It is well known that G cannot contain any characteristic operator besides the identity unless this operator is of order 2 , and that it cannot contain more than one characteristic operator of this order. Hence it results that whenever G contains any characteristic operator besides the identity this operator must appear in every subgroup which is composed of all the operators of G which correspond to their inverses in a given automorphism of G. We proceed to prove that a necessary and sufficient condition that an automorphism of G can be established such that all the operators of a given subgroup H correspond to their inverses, while no other operator of G satisfies this condition, is that H involves all the characteristic operators of G. In particular, when G involves no characteristic operator besides the identity, it is possible to establish an automorphism of G such that all the operators of an arbitrary subgroup correspond to their inverses, while no other operator of G has this property.

When G is of order p^{m}, p being a prime number, and of type $(1,1,1, \cdots)$ it is well known that all of its operators besides the identity can be transformed cyclically and that none of its subgroups of order p is transformed into itself under such a transformation whenever $m>1$. Moreover, when all the operators of G are arranged in co-sets with respect to H, where each of the operators of H corresponds to its inverse, then either all the operators of a co-set correspond to their inverses in the same automorphism or none of these operators has this property. Hence the theorem under consideration is obviously true when G is of order p^{m} and of type ($1,1,1, \cdots$). Moreover, it results from the fact that an abelian group contains only one

[^0]
[^0]: * Presented to the Society, December 30, 1929.

