The proof is immediate, for by the Hamilton-Cayley theorem

$$\delta(R(x)) = 0, \qquad \delta'(S(x)) = 0.$$

Since $\mathfrak A$ is isomorphic with the algebra of matrices R(x) (or S(x)), we have $\delta(x) = 0$ (or $\delta'(x) = 0$).

For the example of §4 we have

$$\delta(\omega) = \omega^2 - \omega x_1, \qquad \delta'(\omega) = \omega^2 - 2\omega x_1 + x_1^2.$$

Hence $\delta(x) = 0$, while $\delta'(x) = x_1^2 - x_1^2 e_1 - x_1 x_2 e_2$.

OHIO STATE UNIVERSITY

ON THE NUMBER $(10^{23}-1)/9$

D. H. LEHMER

The purpose of this note is to save any further effort* in trying to factor the number $N = (10^{23} - 1)/9 = 111$, 11111, 11111, 11111 which in a previous paper was found to be composite.† This assertion was based on a negative result giving $3^{N-1} \not\equiv 1 \pmod{N}$.

On the basis of this conclusion Kraitchik‡ attempted to factor N arriving at another negative result that N had no factors and therefore was a prime. This conflict of results led us to recompute the value of $3^{N-1} \pmod{N}$ which shows clearly a mistake in the original calculation arising from the choice of 3 for a base instead of another number prime to $10^{23}-1$. Such another base would have furnished the extra check which would have detected the error.

^{*} A recent letter from Mr. R. E. Powers informs us that he has been to the trouble of finding 150 quadratic residues of N.

[†] This Bulletin, vol. 33 (1927), p. 338.

[‡] Mathesis, vol. 42 (1928), p. 386.