be solved for s.* This completes the proof of the theorem.

If f(x) = 0 is of degree 7 or 8,[†] there exist three ϕ -functions having the properties of Brioschi's theorem. We then set up a transformation similar to (1), and the equations $\sum y^3 = 0$, $\sum y^4 = 0$ are homogeneous equations in three parameters. The determination of c_1 , c_2 , c_3 will, in general, lead to an equation of the 12th degree, as was pointed out above.

If f(x) = 0 is of degree 6 it does not seem possible to lower materially the maximum 24 which was obtained in the second paragraph.

THE UNIVERSITY OF CALIFORNIA AT LOS ANGELES

SOME PROPERTIES OF MULTI-COHERENT CONTINUA‡

BY W. A. WILSON

1. In a recent paper§ C. Kuratowski gives the following definitions:

A continuum C is called *uni-coherent* (or *n-coherent*) if for every decomposition of C into two continua K and L, where $C \neq K \neq L$, $K \cdot L$ has one (or *n*) components. A continuum C is called *multi-coherent*, if $K \cdot L$ is not connected.

The properties of such continua are later developed in some detail. Among the theorems proved are the following.

^{*} The very exceptional case in which the coefficients of s^4 , s^3 , s^2 , s all vanish, while the term free of s does not vanish, may be handled by introducing homogeneous parameters in (3), that is, by putting M=s+t, $M_2=a_2s+b_2t$, etc. For the present case, t must be zero.

[†] Although Brioschi's theorem does not mention equations of even degree, $(n-1)/2 \phi$ -functions can be set up for an equation of even degree n+1 just as they can for an equation of odd degree n, and in different ways as well.

[‡] Presented to the Society, October 27, 1928.

[§] C. Kuratowski, Sur la structure des frontières communes à deux régions, Fundamenta Mathematicae, vol. 12, pp. 20-42.