ON THE LOCI OF THE LINES INCIDENT WITH $k(r-2)$-SPACES IN S_{r}

BY B. C. WONG
The problem of the determination of the number N_{r} of lines that meet $2 r-2$ given ($r-2$)-spaces in S_{r} has been solved.* Schubert's symbolic or enumerative method is powerful for the solution of problems of this kind and has indeed been the one used, but it does not offer any insight into the nature of the geometry involved. It is the purpose of this paper to re-determine the number N_{r} and also to obtain the loci of the $\infty^{2 r-2-k}$ lines incident with k given ($r-2$)-spaces in S_{r}, where $r<k \leqq 2 r-2$.

For our purpose we make use of the known theorem: \dagger The locus of the ∞^{r-2} lines incident with r general ($r-2$)spaces in S_{r} is a hypersurface V_{r-1}^{r-1}.

Now consider r of the given ($r-2$)-spaces, say $S_{r-2}^{(i)}[i=1$, $2, \cdots, r]$. They yield a V_{r-1}^{r-1} whose generators are incident with them. Any of the remaining $k-r$ given ($r-2$)spaces, say $S_{r-2}^{(r+1)}$, meets V_{r-1}^{r-1} in a V_{r-3}^{r-1}. Any hyperplane S_{r-1}^{\prime} through $S_{r-2}^{(r+1)}$ meets $S_{r-2}^{(i)}$ in $r(r-3)$-spaces. The $\infty{ }^{r-4}$ lines that meet these $r(r-3)$-spaces are in S_{r-1}^{\prime} and hence meet $S_{r-2}^{(r+1)}$, and they form a $V_{r-3}^{M_{r}^{\prime}}$ whose order M_{r}^{\prime} is to be determined later. Hence the ∞^{r-3} lines incident with $r+1(r-2)$-spaces in S_{r} form a $V_{r_{-2}}^{M_{r}+M_{r}^{\prime}}$ (writing M_{r} for $r-1$), for it is met by S_{r-1}^{\prime} in a $V_{r-3}^{M_{r}+M_{r}^{\prime}} \equiv V_{r-3}^{M_{r}}+V_{r-3}^{M_{-}^{\prime}}$.

Now the $(r+2)$ th ($r-2$)-space, $S_{r-2}^{(r+2)}$, meets $V_{r-3}^{M_{r}+M_{r}^{\prime}}$ in a $V_{r-4}^{M_{r}+M_{r}}$. A hyperplane $S_{r-1}^{\prime \prime}$ through $S_{r-2}^{(r+2)}$ intersects the other $r+1(r-2)$-spaces in $r+1(r-3)$-spaces and the ∞^{r-5} lines incident with the latter form a $V_{r-4}^{M_{r}^{\prime \prime}}$. Hence the

[^0]
[^0]: * See C. Segre, Mehrdimensionale Räume, Encyklopädie der Mathematischen Wissenschaften, vol. III: 2, pp. 813, 814 where full references are given.
 \dagger This Bulletin, vol. 32, No. 5, pp. 553-554.

