NOTE ON THE DERIVATIVE CIRCULAR CONGRUENCE OF A POLYGENIC FUNCTION*

BY EDWARD KASNER

In the first paper \dagger I published on polygenic functions I stated the following theorem.

If

$$
w=\phi(x, y)+i \psi(x, y)
$$

is a polygenic function of

$$
z=x+i y
$$

then the first derivative of w with regard to $z, d w / d z=\gamma$ $=\alpha+i \beta$, is represented in the γ-plane by the congruence of circles

$$
\begin{equation*}
(\alpha-H)^{2}+(\beta-K)^{2}=R^{2} \tag{1}
\end{equation*}
$$

where

$$
\left\{\begin{align*}
2 H & =\phi_{x}+\psi_{y}, \quad 2 K=-\phi_{y}+\psi_{x} \tag{2}\\
R^{2} & =h^{2}+k^{2}, \\
2 h & =\phi_{x}-\psi_{y}, \quad 2 k=\phi_{y}+\psi_{x}
\end{align*}\right.
$$

To every point (x, y) of the z-plane corresponds by means of $d w / d z$ that circle of (1) determined by the particular pair of values (x, y).

In this paper I wish to study the converse problem. Let $H(x, y), K(x, y)$, and $R(x, y)$ be three arbitrary functions of $(x, y) \ddagger$ and for every pair of values (x, y) construct in the γ-plane the circle whose center is (H, K)

[^0]
[^0]: * Presented to the Society, September 6, 1928.
 $\dagger A$ new theory of polygenic functions, Science, vol. 66 (Dec., 1927), pp. 581-582. See also a previous paper by Hedrick, Ingold, and Westfall, Journal de Mathématiques, Theory of non-analytic functions of a complex variable, (6), vol. 2 (1923), pp. 327-342.
 \ddagger We require, however, that these functions be continuous and have continuous first, second, and third derivatives.

