D. H. LEHMER

A FURTHER NOTE ON THE CONVERSE OF FERMAT'S THEOREM

BY D. H. LEHMER

In a previous paper* the writer had discussed the converse of Fermat's theorem as a means of establishing the primality or non-primality of a large integer. Use was made chiefly of the following theorem:

THEOREM 3. If $a^x \equiv 1 \pmod{N}$ for x = N-1 and if $a^x \equiv r \neq 1$ for x = (N-1)/p and if r-1 is prime to N, then all the factors of N belong to the form $np^{\alpha}+1$ where α is the highest power of the prime p contained in N-1.

It is the purpose of this note to give a more general theorem in which the third part of the hypothesis of Theorem 3 is removed.

THEOREM 4. If $a^x \equiv 1 \pmod{N}$ for x = N-1 and $a^x \equiv r \neq 1$ for x = (N-1)/p, then all the factors of N/δ are of the form $np^{\alpha}+1$, where α is the highest power of the prime p contained in N-1 and where δ is the G.C.D. of r-1 and N.

Let k be a prime factor of N/δ and let ω be the exponent to which a belongs modulo k. Then ω divides N-1 and k-1but not m = (N-1)/p; for if ω divided m we would have $a^m \equiv 1 \pmod{k}$ so that r-1 would divide by k. But this is impossible, since k divides N/δ which is prime to r-1. From here on, the proof is the same as in Theorem 3 with the result that $k = np^{\alpha} + 1$.

Ordinarily, we have $\delta = 1$ so that the two theorems become identical. An example in which this is not the case is the following: Let N=16,046,641. $N-1=2^4\times 3^3\times 5\times 17\times 19$ $\times 23$. It will be found that

^{*} This Bulletin, vol. 33 (1927), pp. 327-340.