are ∞^1 such inscribed and circumscribed pyramids P the mapping upon (x) gives the following theorem.

THEOREM. Let C'_4 and C''_4 be two fixed symmetric quartics in (x). Construct a quartic $C_4^{(1)}$ with a sextuple contact with C'_4 , cutting C'_4 in two sextuples S_1 and S_2 . Through S_2 draw another quartic $C_4^{(2)}$ with a sextuple contact with C'_4 , which cuts C'_4 in another sextuple S_3 . Through S_3 draw similarly a third quartic $C_4^{(3)}$, cutting C'_4 in a sextuple S_4 , and so forth. Suppose that after drawing n such quartics, the last $C_4^{(n)}$ through S_n cuts C'_4 in a sextuple S_{n+1} which coincides with S_1 . If this happens once then there exists an infinite number of such series of quartics with the closure property.

Moreover there exist two other fixed quartics D'_4 and D'_4 which are related to these series in precisely the same manner as C'_4 and C'_4 .

THE UNIVERSITY OF ILLINOIS

CONGRUENCES OF LINES OF SPECIAL ORIENTATION RELATIVE TO A SURFACE OF REFERENCE*

BY M. C. FOSTER

1. Introduction. With each line l of a rectilinear congruence let us associate the point M in which l intersects a surface of reference S. We refer S to any orthogonal system. Let α , β , γ be the direction-cosines of l relative to the moving trihedral of S at M, the x-axis being chosen tangent to the curve v = const. By congruences of special orientation relative to S, we shall mean those congruences for which the functions α , β , γ are of a special form. The present paper is concerned primarily with the case when α , β , γ are constant.

2. Normal Congruences. Relative to the moving trihedral the coordinates of any point P on l are

^{*} Presented to the Society, December 28, 1926.