CONCERNING THE BOUNDARIES OF DOMAINS OF A CONTINUOUS CURVE*

BY W. L. AYRES

We shall consider a space M consisting of all the points of a plane continuous curve M^{\dagger} , and all point sets mentioned are assumed to be subsets of M. A connected set of points D of M is said to be an M-domain if M-D is closed. The set of all limit points of D which do not belong to Dis called the M-boundary of D. If D is an M-domain, D'denotes the M-boundary of D, and \overline{D} denotes the set D+D'. The M-boundary of an M-domain D is closed but not necessarily connected, even if D is simply connected, as we may easily show by examples. If N is a continuum, a maximal connected subset of M-N is called a *complementary* M-domain of N.

THEOREM I.[‡] Every closed and connected subset of the *M*-boundary of a complementary *M*-domain of a continuous curve N is a continuous curve.

PROOF. Let K denote a closed and connected subset of the M-boundary of a complementary M-domain D of N. Suppose K is not connected im kleinen. Then there exist§ two concentric circles C_1 and C_2 (let r_i denote the radius of C_i and let $r=r_1-r_2>0$) and an infinite sequence of subcon-

^{*} Presented to the Society, February 26, 1927.

[†] A point set which is closed, connected and connected im kleinen is called a *continuous curve*. In general it may be either bounded or unbounded.

 $[\]ddagger$ For the case where *M* is the entire plane and *N* is bounded, see R. L. Wilder, *Concerning continuous curves*, Fundamenta Mathematicae, vol. 7 (1925), p. 361.

[§] See R. L. Moore, *Report on continuous curves from the viewpoint of analysis situs*, this Bulletin, vol. 29 (1923), p. 296. This theorem is stated by Moore for a bounded continuum, but the theorem remains true without the condition of boundedness.