J. R. CARSON

variations of sign in (2); for $x = -\infty$ there are s, thus $H_n(x) = 0$ has at least σ real roots.

We now consider the general case that the sequence (2) has common roots. With Weber we may dispose of this case as follows. Suppose e.g. that H_k , H_{k-1} have common roots. We vary the terms a_{ij} of H_k not in H_{k-1} by small amounts numerically less than some η , so that H_k , H_{k-1} do not have common roots.

In this way we may replace (2) by another sequence

(5) $K_n, K_{n-1}, K_{n-2}, \cdots, K_1, K_0 = 1$

no two of which have a common root. The roots of $K_n=0$ differ from those of $H_n=0$ by an amount as small as we please, for sufficiently small η , moreover the signs of corresponding elements of the sequences (2), (5) are the same for an x for which no element of (2) vanishes. As Theorem I holds for (5), it must hold for (2).

THEOREM II. The roots of the secular equations are all real.

For in this equation s = 0; hence $\sigma = n$.

YALE UNIVERSITY

A GENERALIZED TWO-DIMENSIONAL POTENTIAL PROBLEM

BY J. R. CARSON

It may be shown that the solution of the problem of electromagnetic wave propagation along a system of straight parallel conductors can be reduced to the solution* of two subsidiary problems: (1) a well known problem in twodimensional potential theory; and (2) a generalization of the two-dimensional potential problem which is believed to be novel. The generalized problem is believed to possess suffi-

296

^{*} Subject to certain restrictions to be discussed in a forthcoming paper.