FUNCTIONS EXPANSIBLE IN SERIES*

BY L. E. WARD

In the Transactions of this Society[†] Hopkins has stated and proved the following theorem.

THEOREM I. If f(x) is a function analytic in the interior and on the boundary of a circle centered at x=0 and of radius x_0 , $0 < x_0 < \pi$, which involves in its power series expansion only powers of x of indices congruent to 2 (mod 3), and which has a continuous second derivative for real values of x in the interval $0 \le x \le \pi$, then the formal development of f(x) in a series whose terms are the characteristic functions of the differential system

$$\frac{d^3u}{dx^3} + \rho^3 u = 0, \qquad u(0) = u'(0) = u(\pi) = 0,$$

converges uniformly to f(x) in the interval $0 \leq x \leq x_0$.

Hopkins proved further that the development converges uniformly to f(x) in the interior of an equilateral triangle centered at x=0 and having one vertex at $x=x_0$. The following theorem in which the adjoint differential system appears is obtained from Theorem I by the change of variable $x'=\pi-x$.

THEOREM II. If f(x) is a function analytic in the interior and on the boundary of a circle centered at $x = \pi$ and of radius x_1 , $0 < x_1 < \pi$, which involves in its power series expansion only powers of $(\pi - x)$ of indices congruent to 2 (mod 3), and which has a continuous second derivative for real values of x in the interval $0 \le x \le \pi$, then the formal development of f(x) in a series

^{*} Presented to the Society, April 2, 1926.

[†] J. W. Hopkins, Transactions of this Society, 1919, pp. 245, et seq. Published by D. Jackson.