NOTE ON A PROBLEM IN APPROXIMATION WITH AUXILIARY CONDITIONS*

BY DUNHAM JACKSON

Let $\rho(x)$ and f(x) be two given functions of period 2π , the former bounded and measurable, with a positive lower bound, the latter, for simplicity, continuous. Among all trigonometric sums $T_n(x)$, of given order *n*, there is one and just one for which the value of the integral

(1)
$$\int_{0}^{2\pi} \rho(x) [f(x) - T_{n}(x)]^{2} dx$$

is a minimum. If the weight function $\rho(x)$ is identically 1; it is a matter of familiar knowledge that the minimum is reached when $T_n(x)$ is the partial sum of the Fourier series for f(x). A considerable amount of attention has been given recently to the problem of the convergence of the minimizing sum $T_n(x)$ toward f(x), as *n* becomes infinite, under the generalized conditions that result from the admission of an arbitrary weight function.[†]

Let x_1, \dots, x_N be N values of x in the interval $0 \leq x < 2\pi$. The problems of the preceding paragraph may be further varied by admitting to consideration only such sums $T_n(x)$ as satisfy the conditions

(2)
$$T_n(x_i) = f(x_i), \qquad (i = 1, 2, \dots, N),$$

and inquiring after the minimum of the integral (1) subject to these auxiliary conditions. It is understood that the given value of n is large enough so that the conditions (2) can be

^{*}Presented to the Society, April 3, 1926.

[†] Cf. e.g., D. Jackson, Note on the convergence of weighted trigonometric series, this BULLETIN, vol. 29 (1923), pp. 259–263, where further bibliographical references will be found; also D. Jackson, A generalized problem in weighted approximation, TRANSACTIONS OF THIS SOCIETY, vol. 26 (1924), pp. 133–154.