ON THE NUMBER OF ELEMENTS OF A GROUP WHICH HAVE A POWER IN A GIVEN CONJUGATE SET*

BY LOUIS WEISNER

1. Introduction. A fundamental theorem on abstract groups is Frobenius' theorem: The number of elements in a group of order g whose nth powers belong to a given conjugate set is zero or a multiple of the greatest common divisor of g and n. In this paper, I will prove the following theorems, which are also concerned with the number of elements having a power in a given conjugate set.

THEOREM 1. The number of elements of a group whose nth powers are in a given conjugate set is either zero, or a multiple of the number of elements in the conjugate set.

THEOREM 2. In a group of order g, the number of elements which have a power in a given conjugate set of elements of order n is a multiple of the greatest divisor of g that is prime to n.

An interesting deduction from Theorem 2 is the following theorem.

THEOREM 3. In a group of order g, the number of elements whose orders are multiples of n is either zero, or a multiple of the greatest divisor of g that is prime to n.

2. Proof of Theorem 1. Let t_1, t_2, \dots, t_x be the elements of a group G which satisfy the equation $t^n = s_1$, and let the conjugates of s_1 under G be s_1, s_2, \dots, s_m . There exist elements u_1, u_2, \dots, u_m in G such that

$$u_i^{-1} s u_i = s_i, \quad (i = 1, 2, \dots, m).$$

Since $t_a^n = s_1$,

$$(u_i^{-1}t_au_i)^n = u_i^{-1}su = s_i.$$

^{*} Presented to the Society, February 28, 1925.