CONCERNING RELATIVELY UNIFORM CONVERGENCE*

BY R. L. MOORE

According to E. H. Moore, a sequence of functions $f_1(p)$, $f_2(p)$, $f_3(p)$, \cdots , defined on a range K, is said to converge, to a function f(p), relatively uniformly with respect to the scale function s(p) if, for every positive number e, there exists a positive number δ_e such that if $n > \delta_e$ then, for every p which belongs to K, $|f_n(p)-f(p)| < e |s(p)|^+$.

In this note I will establish the following theorem.

THEOREM. If S is a convergent sequence of measurable functions $f_1(x), f_2(x), f_3(x), \cdots$ defined on a measurable point set E and S converges for each x belonging to E, then E contains a subset E_0 of measure zero such that the sequence S converges relatively uniformly for all values of x on the range $E - E_0$.

PROOF. Suppose that S converges on E to the limit function f(x). By a theorem due to Egoroff[‡], E contains a subset E_1 of measure less than 1 such that S converges to f(x) uniformly on $E - E_1$. Similarly E_1 contains a subset E_2 of measure less than 1/2 such that S converges to f(x) uniformly on $E_1 - E_2$. Continue this process thus obtaining a sequence of point sets E_1, E_2, E_3, \cdots such that, for each n, (1) the measure of E_n is less than 1/n, (2) E_{n+1} is a subset of E_n , (3) S converges uniformly on $E_n - E_{n+1}$. Let E_0 denote the set of points common to the sets E_1, E_2, E_3, \cdots . The set E_0 is either vacuous or of measure 0. Furthermore

$$E = E_0 + (E - E_1) + (E_1 - E_2) + \cdots$$

Since S converges uniformly on each point set of the countable collection $E - E_1$, $E_1 - E_2$, $E_2 - E_3$, \cdots , it

^{*} Presented to the Society, April 14, 1922.

[†] See E. H. Moore, *Introduction to a Form of General Analysis*, The New Haven Mathematical Colloquium (Yale University Press, New Haven, 1910).

[‡] Comptes Rendus, Jan. 30, 1911.