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Let us see what the effect will be when the value of z
as obtained from ¢ = 0 is substituted in equations (1).
Suppose that the substitution has been made in X and Z.
It is easy to see that X, and Z, are equal to zero, and
that to differentiate X completely with respect to «, it is
necessary to differentiate with respect to x and then to
use the function of a function rule, thus X, X,(92/0x),
and similarly for the other letters. Thus using the fact that
o = 0, we may write the equations (5) in the form

(xp+§—;x,) ot 02— (2,+ Z—;z,) (XokpX) — O,

(16) (Pp—}——%il’z) (Kot pX— X+ -,f;—gx) (Po+pP) =0,

(Pﬁ—?—%ﬂ) Gt vZ)— 2t %Z) (Po+pP)=0.

It is very easy to see that these equations are now the
expanded form of the determinants of the matrix (15).
Hence the theorem is proved.
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1. Statement of the Problem. The authort has already
considered functionals of the form fly(z(), 4/ (z0)] (depending
only on a function y(z) and its derivative ¢'(v) between
0 and 1) which are invariant under an arbitrary Volterra
one-parameter group of continuous transformations. The
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T Cf. Integro-differential expressions invariant under Volterra's
group of tramsformations in a forthcoming issue of the ANNALS oF
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