QUADRATIC FIELDS IN WHICH FACTORIZATION IS ALWAYS UNIQUE*

BY L. E. DICKSON

1. Definitions. Let m be an integer, other than 0 and 1, such that m is not divisible by a perfect square exceeding unity. All numbers $r+s\sqrt{m}$ in which r and s are rational constitute a field $R(\sqrt{m})$. Its algebraic integers are known to be $x+y\theta$, where x and y are rational integers, and

(1)
$$\theta = \sqrt{m}$$
 if $m \equiv 2$ or $m \equiv 3$ (mod 4),

(2)
$$\theta = \frac{1}{2}(1 + \sqrt{m}), \ \theta^2 = \theta - k, \ \text{if } m \equiv 1 \pmod{4},$$

where $k = \frac{1}{4}(1-m)$. The conjugate of $\xi = x+y\theta$ is defined to be $\xi' = x+y\theta'$, where $\theta' = -\theta$ in case (1), and $\theta' = \frac{1}{2}(1-\sqrt{m})$ in case (2). The product $\xi\xi'$ is called the norm of ξ , and is denoted by $N(\xi)$. According as the case is (1) or (2), we have

(3)
$$N(x+y\theta) = x^2 - my^2$$
 or $x^2 + xy + ky^2$.

If ξ is an algebraic integer such that $N(\xi) = \pm 1$, then ξ is called a *unit*. The only units in R(i) are ± 1 and $\pm i$.

2. Object of the Paper. It is known[†] that -1, -2, -3, -7 and -11 are the only negative values of m for which the greatest common divisor process yielding numerically decreasing norms is always applicable in $R(\sqrt{m})$, so that if a and b are any algebraic integers $(b \neq 0)$ there exist algebraic integers q and r of the field such that

$$a = bq + r$$
, | norm $r \mid < \mid$ norm $b \mid$.

MONTHLY, vol. 13 (1906), pp. 156-159.

^{*} Presented to the Society, December 29, 1923. See also This Bulletin, p. 90, Jan.-Feb., 1924, and footnote, p. 247, May-June, 1924. † For a geometric proof, see Birkhoff, American Mathematical