DETERMINATION OF ALL SYSTEMS OF ∞⁴ CURVES IN SPACE IN WHICH THE SUM OF THE ANGLES OF EVERY TRIANGLE IS TWO RIGHT ANGLES *

BY JESSE DOUGLAS

1. Introduction. Consider the curves which intersect an arbitrarily chosen system of ∞^1 curves in the plane under a fixed angle α . If α is varied, a system of ∞^2 curves is obtained, termed an *isogonal* family. Isogonal families are characterized by differential equations of the form

(1)
$$y'' = (T_x + y'T_y)(1 + y'^2),$$

where T is any function of x and y.

It is easy to prove synthetically that in all isogonal families, and in no other systems of ∞^2 curves in the plane, the sum of the angles of the triangle formed by any three of the curves is equal to π .[†]

A *natural* family of curves in any space is one obtainable as the system of extremals of a calculus of variations problem of the form

(2)
$$\int Fds = \min mum,$$

where F is any point function.[‡] In the plane, F is a function of x and y, and the Euler-Lagrange equation of (2) is

(3)
$$y'' = (L_y - y'L_x)(1 + y'^2),$$

where $L = \log F$.

Since the family formed by the ∞^2 straight lines of the plane is both isogonal and natural, and since each of these characters is invariant under conformal transformation, every

356

^{*} Presented to the Society, April 28, 1923.

[†]G. Scheffers, Isogonalkurven, Äquitangentialkurven und komplexe Zahlen, MATHEMATISCHE ANNALEN, vol. 60 (1905), p. 504.

[‡] See E. Kasner, PRINCETON COLLOQUIUM LECTURES (1912), pp. 34-37.