EXTENSION OF AN EXISTENCE THEOREM FOR A NON-SELF-ADJOINT LINEAR SYSTEM.

BY PROFESSOR H. J. ETTLINGER.

(Read before the American Mathematical Society December 31, 1919.)

In a recent paper* the writer established the existence of at least one real characteristic number for the non-self-adjoint system

(1)
$$\frac{d}{dx}\left[K(x,\lambda)\frac{du}{dx}\right] - G(x,\lambda)u = 0,$$

(2)
$$U_i = A_{i1}u(a) - A_{i2}K(a)u_x(a)$$

 $- A_{i3}u(b) + A_{i4}K(b)u_x(b) = 0 \quad (i = 1, 2).$

satisfying the following conditions I, II, III, IV, V, and either VI A or VI B:

I. $K(x, \lambda)$ and $G(x, \lambda)$ are continuous, real functions of x in $a \leq x \leq b$ and for all real values of λ in the interval

$$\Lambda(\Lambda_1 < \lambda < \Lambda_2).$$

II. $K(x, \lambda)$ is positive everywhere in $(a, b), \Lambda$.

III. The sets of real constants A_{1j} and A_{2j} are not proportional.

IV. For each value of x in (a, b), K and G do not increase as λ increases.

V. $\lim_{\lambda = \Lambda_1} - \frac{\min G}{\min K} = -\infty$, $\lim_{\lambda = \Lambda_2} - \frac{\max G}{\max K} = +\infty$.

VI A.† $D_{12} \cdot D_{34} = 0$, together with either

(a)
$$D_{24}^2 + D_{14}^2 \neq 0$$
, $D_{14} \ge 0$, $D_{24} \ge 0$,
or

(b)
$$D_{24}^2 + D_{14}^2 = 0$$
, $D_{13}^2 + D_{23}^2 \neq 0$, $D_{13} \leq 0$, $D_{23} \leq 0$.

VI B. $D_{12} \cdot D_{34} \neq 0$, together with either

(a)
$$D_{24} > 0$$
 or (b) $D_{24} = 0$, $D_{14} > 0$.

^{*} Existence theorem for the non-self-adjoint linear system of the second order, ANNALS OF MATHEMATICS, vol. 25 (1920), pp. 278–290. $\dagger D_{ij} = \begin{vmatrix} A_{1i} & A_{1j} \\ A_{2i} & A_{2j} \end{vmatrix}$.