series practically as useful as the converging series, perhaps even more so, for it is very frequent that the greater the ultimate divergence, the greater also is the primitive tendency towards convergence."

The theorem that "the first term neglected is a superior limit of the error of approximation," though, as De Morgan says, not universally true, is true, he says, of large classes of alternating series, including the series $\phi(x)-\phi(x+1)$ $+\phi(x+2)-\ldots$ "for all cases in which $\phi(x)$ can be the expressed by $\int_{a}^{\beta} e^{n v x} X_{v} d v, X_{v}$ being always positive between limits."

In the development of the modern theories of divergent series, Augustus De Morgan deserves to be ranked as a pioneer.

On December 23, 1857, Sir William R. Hamilton* wrote to De Morgan: "About diverging series, you know a great deal more than I do. In fact you are aware that I early conceived a sort of prejudice against them, in consequence of some of Poisson's remarks. Counter-remarks of yours had staggered me, but had not been carefully weighed. At last (and, I regret to say it, without having yet found the Papers by you and Stokes on such series, for Stokes, or Adams for him, sent me about a month ago a duplicate of his memoir on the numerical calculation of the values of certain definite integrals, having a great affinity to my last Paper) I am become a convert to those Divergents; so far at least as to be satisfied that in an extensive class of cases, and with suitable limitations, they may be safely and advantageously used."

University of California.

RUSSELL'S INTRODUCTION TO MATHEMATICAL PHILOSOPHY.

Introduction to Mathematical Philosophy. By Bertrand Russell. (The Library of Philosophy.) London, Allen and Unwin, and New York, The Macmillan Company, 1919. 8 vo. viii +208 pp. $\$ 3.00$.

This book, called an introduction to mathematical philosophy, is an excellent introduction to that field and, more

[^0]
[^0]: * R. P. Graves, Life of Sir William Rowan Hanilton, vol. 3, 1899, p. 538.

