Then we may take *n* so great that $\xi_i^{(n)}$ contains every function in Σ_i , and then, since $\lambda_i^{(n)}$ is the least norm, we must have $\lambda_i^{(n)} < \epsilon$, and consequently $\lambda_i < \epsilon$. Hence

THEOREM IV. *A necessary and sufficient condition that a normalized system* $[\varphi]$ *be essentially linearly dependent is that* $\lambda_i = 0$ for some *i*.

Theorems II and IV give

THEOREM V. *A necessary and sufficient condition that a* $system$ $[\varphi]$ have an adjoint is that it be essentially linearly i *ndependent.*

THE UNIVERSITY OF OREGON, *November,* 1919.

ON CERTAIN RELATED FUNCTIONAL EQUATIONS.

BY DR. W. HAROLD WILSON.

(Read before the American Mathematical Society December 27, 1917.)

§ 1. *Introduction.*

THIS paper treats of the relationships which exist between certain functional equations. In § *2,* the equations

(1)
$$
S(x - y) = S(x)C(y) - C(x)S(y),
$$

and

(2)
$$
C(x - y) = C(x)C(y) - k^2S(x)S(y)
$$

are considered individually and as a system. It is shown that (1) and (2) have their solutions in common if $C(x)$ is an even function and $S(x) \neq 0$. As a consequence, it is shown that if $k \neq 0$, then

$$
S(x) = [F(x) - F(-x)]/2k, \text{ and } C(x) = [F(x) + F(-x)]/2,
$$

where $F(x + y) = F(x)F(y)$. If $k = 0$ and $S(x) \neq 0$, $C(x) = 1$
and

$$
S(x + y) = S(x) + S(y).
$$

The work at this point is very closely allied to that of