Then we may take n so great that $\xi_i^{(n)}$ contains every function in Σ_i , and then, since $\lambda_i^{(n)}$ is the least norm, we must have $\lambda_i^{(n)} < \epsilon$, and consequently $\lambda_i < \epsilon$. Hence

THEOREM IV. A necessary and sufficient condition that a normalized system $[\varphi]$ be essentially linearly dependent is that $\lambda_i = 0$ for some i.

Theorems II and IV give

Theorem V. A necessary and sufficient condition that a system $[\varphi]$ have an adjoint is that it be essentially linearly independent.

The University of Oregon, November, 1919.

ON CERTAIN RELATED FUNCTIONAL EQUATIONS.

BY DR. W. HAROLD WILSON.

(Read before the American Mathematical Society December 27, 1917.)

§ 1. Introduction.

This paper treats of the relationships which exist between certain functional equations. In § 2, the equations

(1)
$$S(x - y) = S(x)C(y) - C(x)S(y),$$

and

(2)
$$C(x - y) = C(x)C(y) - k^2S(x)S(y)$$

are considered individually and as a system. It is shown that (1) and (2) have their solutions in common if C(x) is an even function and $S(x) \not\equiv 0$. As a consequence, it is shown that if $k \neq 0$, then

$$S(x) = [F(x) - F(-x)]/2k$$
, and $C(x) = [F(x) + F(-x)]/2$,

where F(x + y) = F(x)F(y). If k = 0 and $S(x) \neq 0$, $C(x) \equiv 1$ and

$$S(x + y) = S(x) + S(y).$$

The work at this point is very closely allied to that of