A SET OF COMPLETELY INDEPENDENT POS-TULATES FOR THE LINEAR ORDER η^* .

BY PROFESSOR M. G. GABA.

(Read before the American Mathematical Society September 4, 1919.)

PROFESSOR E. V. HUNTINGTON has published[†] three sets of completely independent postulates for serial order. His set A involves four postulates, which is as high a number of postulates as had been proved completely independent. In the present paper are given seven postulates which form a categorical and completely independent set for the linear order.

Our basis is a class of elements [p] and an undefined dyadic relation (called 'less than') among the elements. If we are given two elements p_1p_2 and if the relation p_1 less than p_2 holds, we will symbolize it by $p_1 < p_2$. If the relation p_1 less than p_2 does not hold, we will symbolize it by $p_1 < p_2$.

Our postulates are:

I. If $p_1 < p_2$, then $p_2 < p_1$.

II. If $p_1 \ll p_2$, then $p_2 \lt p_1$; p_1 , p_2 distinct.

- III. If $p_1 < p_2$ and $p_2 < p_3$, then $p_1 < p_3$.
- IV. If $p_1 < p_2$, then there exists a p_3 such that $p_1 < p_3$ and $p_3 < p_2$.

V. For every p_1 there exists a p_2 such that $p_2 < p_1$.

VI. For every p_1 there exists a p_2 such that $p_1 < p_2$.

VII. The class of elements [p] form a denumerable set.

That the set is categorical follows from the fact that the seven postulates stated are the necessary and sufficient conditions for the linear order η . To show complete independence it will be necessary to cite 128 (2⁷) examples showing all possible combinations ($\pm \pm \pm \pm \pm \pm \pm$) of our postulates holding and not holding. This is done by giving eight definitions of <, and sixteen sets of points such that each definition is applicable to every one of the sets, and every combination

^{*} The linear order η is an ordered set equivalent to that of all the rational numbers.

^{† &}quot;Sets of completely independent postulates for serial order." This BULLETIN, March, 1917. This paper contains a bibliography of complete independence.