position and the number of the maxima and minima of the curve, and shows that all types actually exist. For example: for all $\delta > 0$ sufficiently small, the curve

$$y = (x + \delta i)(x - \delta i)(x + 1 + \delta^3 i)(x + 1 - \delta^3 i) \cdot (x + 1 + \delta^2 + \delta^5 i)(x + 1 + \delta^2 - \delta^5 i)(x + 1 + \delta^2 + \delta^4)$$

has six extremes which, read for decreasing values of x, are arranged so that the first minimum of y is higher than the second maximum, and the second minimum higher than the third maximum.

E. J. MOULTON, Acting Secretary.

FORM OF THE NUMBER OF SUBGROUPS OF PRIME POWER GROUPS.

BY PROFESSOR G. A. MILLER.

(Read before the American Mathematical Society September 3, 1919.)

§1. Introduction.

It is known that the number of the subgroups of order p^{α} , p being any prime number, which are contained in any group G is always of the form 1 + kp. When k = 0 for every possible pair of values for α and p the group G must be cyclic and vice versa. There are two infinite systems of groups of order p^{m} containing separately p + 1 subgroups of every order which is a proper divisor of the order of the group, viz., the abelian groups of type (m - 1, 1) and the conformal non-abelian groups.

These two infinite systems are composed of all the groups of order p^m involving separately exactly p + 1 subgroups of every order which is a proper divisor of p^m . Moreover, if a group of order p^m , p > 2, contains exactly p + 1 subgroups of each of the two orders p and p^2 it must contain exactly p + 1 subgroups of every order which is a proper divisor of the order of the group, and if a group of order 2^m contains exactly three subgroups of each of the orders 2, 4 and 8 it must also contain exactly three subgroups of every other order which is a proper divisor of 2^m .