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position and the number of the maxima and minima of the 
curve, and shows that all types actually exist. For example: 
for all S > 0 sufficiently small, the curve 

y = (x + ôi)(x - ôi)(x + 1 + ôH)(x + 1 - ÔH)-
Or + 1 + 52 + ôH)(x + 1 + S2 - ôH)(x + 1 + 52 + S4) 

* • 

has six extremes which, read for decreasing values of x, are 
arranged so that the first minimum of y is higher than the 
second maximum, and the second minimum higher than the 
third maximum. 

E. J. MOULTON, 
Acting Secretary. 

FORM OF THE NUMBER OF SUBGROUPS OF 
PRIME POWER GROUPS. 
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(Read before the American Mathematical Society September 3, 1919.) 

§1. Introduction. 

IT is known that the number of the subgroups of order pa, p 
being any prime number, which are contained in any group G 
is always of the form 1 + kp. When k = 0 for every possible 
pair of values for a and p the group G must be cyclic and vice 
versa. There are two infinite systems of groups of order pm 

containing separately p + 1 subgroups of every order which 
is a proper divisor of the order of the group, viz., the abelian 
groups of type (m — 1, 1) and the conformai non-abelian 
groups. 

These two infinite systems are composed of all the groups 
of order pm involving separately exactly p + 1 subgroups of 
every order which is a proper divisor of pm. Moreover, if a 
group of order pm, p > 2, contains exactly p + 1 subgroups 
of each of the two orders p and p2 it must contain exactly 
p + 1 subgroups of every order which is a proper divisor of 
the order of the group, and if a group of order 2m contains 
exactly three subgroups of each of the orders 2, 4 and 8 it 
must also contain exactly three subgroups of every other order 
which is a proper divisor of 2m. 


