ω and therefore N being prime to p. We have further

(5)
$$\left[\frac{d^{p-1}(VX)}{dv}\right]_{v=0} \equiv X(1) \left[\frac{d^{p-1}V}{dv}\right]_{v=0} \equiv -X(1) \pmod{p}.$$

Comparison of (5), (4) and (3) gives the theorem (1).

PHILADELPHIA, April, 1918.

TRAJECTORIES AND FLAT POINTS ON RULED SURFACES.

BY MR. J. K. WHITTEMORE.

(Read before the American Mathematical Society April 28 and October 27, 1917.)

§1. Introduction. In the following paper we determine the flat points* of a ruled surface with real rulings, and prove a new property of the orthogonal trajectories of the rulings. This property may be extended to any isogonal trajectory of the rulings, not itself a ruling, and may be regarded as a generalization of Bonnet's familiar theorem.[†]

Let S be a ruled surface with real rulings, g any such ruling, C an orthogonal trajectory of the rulings, generally not a straight line; let the coordinates of any point of C be x_0, y_0, z_0 , and consider these as functions of v, the arc of C. When C is not a straight line let the direction cosines of its tangent be α, β, γ , of its principal normal be l, m, n, and of its binormal be λ, μ, ν ; let R and T be respectively the radii of curvature and torsion of C, ψ the angle measured from the principal normal towards the binormal to the direction chosen as positive on g. We suppose C to be a rectifiable curve generally without singular points in the portion considered; the curvature 1/Rand the torsion 1/T shall have finite first derivatives with respect to v, and ψ shall have a finite second derivative.

The surface S is given by

(1)
$$x = x_0 + uL, \qquad L = l \cos \psi + \lambda \sin \psi,$$

223

^{*} Flat points are defined in § 4 of this paper. † See Eisenhart, Differential Geometry, p. 248.