ON THE EVALUATION OF THE ELLIPTIC TRAN-SCENDENTS η_2 AND η_2' .

BY PROFESSOR HARRIS HANCOCK.

WITH Halphen* write

$$f(s) = 4s^3 - g_2s - g_3 = 4(s - e_1)(s - e_2)(s - e_3) = S,$$

where e_2 is a real quantity and e_1 , e_3 are conjugate imaginaries such that $e_1 - e_3$ is a positive pure imaginary. The discriminant $\Delta = g_2^3 - 27g_3^2$ is here negative. The elliptic differential equation in this notation is $ds^2/du^2 = 4s^3 - g_2s - g_3$, whose integral is

$$u=\int_s^\infty \frac{ds}{\sqrt{f(s)}}.$$

If the lower limit of this integral be considered as a function of the integral, that is of u, we may write $s = \wp u$.

As is well known, the quantity ω_2 is defined by

(1)
$$\omega_2 = \int_{e_2}^{\infty} \frac{ds}{\sqrt{f(s)}}; \quad \varphi \omega_2 = e_2, \quad \varphi' \omega_2 = 0.$$

If further we write

$$f_1(s) = 4s^3 - g_2s + g_3 = 4(s + e_1)(s + e_2)(s + e_3),$$

the quantity ω_2' is defined through the relations

(2)
$$\frac{\omega_2'}{i} = \int_{-e_2}^{\infty} \frac{ds}{\sqrt{f_1(s)}}; \quad \varphi \omega_2' = e_2, \quad \varphi' \omega_2' = 0.$$

Note that ω_2' is a pure imaginary.

It may be shown that the three half-periods

$$\omega_1 = \frac{1}{2}(\omega_2 - \omega_2'), \quad \omega_2, \quad \omega_3 = \frac{1}{2}(\omega_2 + \omega_2'),$$

correspond to the quantities e_1 , e_2 , e_3 above, the relations being the same as are those for ω , $\omega'' = \omega + \omega'$, ω' in the usual notation where all three of the roots e_1 , e_2 , e_3 are real.

Write

$$\frac{d}{du}\zeta u=-\varphi u,$$

* Fonctions Elliptiques, vol. 1, chap. 6.