ON THE EVALUATION OF THE ELLIPTIC TRAN-SCENDENTS η_2 AND η_2' .

BY PROFESSOR HARRIS HANCOCK.

WITH Halphen* write

$$
f(s) = 4s3 - g2s - g3 = 4(s - e1)(s - e2)(s - e3) = S,
$$

where e_2 is a real quantity and e_1 , e_3 are conjugate imaginaries such that $e_1 - e_3$ is a positive pure imaginary. The dis-
criminant $\Delta = g_2^3 - 27g_3^2$ is here negative. The elliptic dif-
ferential equation in this notation is $ds^2/du^2 = 4s^3 - g_2s - g_3$, whose integral is

$$
u=\int_s^\infty\frac{ds}{\sqrt{f(s)}}.
$$

If the lower limit of this integral be considered as a function of the integral, that is of u, we may write $s = \varphi u$.

As is well known, the quantity ω_2 is defined by

(1)
$$
\omega_2 = \int_{e_2}^{\infty} \frac{ds}{\sqrt{f(s)}}; \quad \varphi \omega_2 = e_2, \quad \varphi' \omega_2 = 0.
$$

If further we write

$$
f_1(s) = 4s^3 - g_2s + g_3 = 4(s + e_1)(s + e_2)(s + e_3),
$$

the quantity ω_2 ' is defined through the relations

(2)
$$
\frac{\omega_2'}{i} = \int_{-\epsilon_2}^{\infty} \frac{ds}{\sqrt{f_1(s)}}; \quad \varphi \omega_2' = e_2, \quad \varphi' \omega_2' = 0.
$$

Note that ω_2 ' is a pure imaginary.

It may be shown that the three half-periods

$$
\omega_1=\tfrac{1}{2}(\omega_2-\omega_2'), \quad \omega_2,\quad \omega_3=\tfrac{1}{2}(\omega_2+\omega_2'),
$$

correspond to the quantities e_1, e_2, e_3 above, the relations being the same as are those for $\omega, \omega'' = \omega + \omega', \omega'$ in the usual notation where all three of the roots e_1 , e_2 , e_3 are real.

Write

$$
\frac{d}{du}\zeta u = -\varphi u,
$$

* Fonctions Elliptiques, vol. 1, chap. 6.