Here $e_2 \oplus e_3 \neq e_3 \oplus e_2$.

$\overline{\mathrm{III}}_{b}.$	Ð	e_1	e_2	<i>e</i> ₃	\odot	e_1	e_2	e_3
	e_1	e_1	e_2	e ₃	e_1	e_1	e_1	<i>e</i> ₁
	e_2	e_2	e_2	e_2	e_2	e_1	e_2	e_2
	e_3	e_3	e_2	e_3	e_3	e_1	e_3	e_3
Here $e_2 \odot$	$e_3 \neq e_3$	• e	82.					

UNIVERSITY OF CALIFORNIA, March, 1916.

NOTE ON REGULAR TRANSFORMATIONS.

BY DR. L. L. SILVERMAN.

LET u(x) be bounded and integrable, $0 \leq x$, and k(x, y) integrable in y for each x, $0 < y \leq x$; then the transformation*

(1)
$$v(x) = \alpha u(x) + \int_0^x k(x, s) u(s) ds$$

is regular if

 $\lim u(x)$ $x = \infty$

implies the existence of

$$\lim_{x=\infty} v(x)$$

and the equality of the limits. The transformation (1), which depends on the number α and on the function k(x, y), will be denoted by the symbol $[\alpha; k(x, y)]$. Examples of regular transformations are given by [1; 0], which is the identical transformation, and [0; 1/x], which corresponds to the first Hölder mean. In a forthcoming paper† the author discusses conditions on α and k(x, y) for the regularity of the transformation[‡] (1), and proves the following theorem:

THEOREM 1. A sufficient condition that k(x, y) defined, $0 < y \leq x$, and integrable in y for each x, correspond to a

* It is assumed that the improper integral converges; the lower limit of integration is taken zero for convenience.

† Transactions, vol. 17 (1916). ‡ The function k(x, y) in (1) is $(1 - \alpha)$ times the function k(x, y) in the article referred to.

|| See Theorem III in the article referred to; the numbers a and b of that theorem are here replaced by 0 and a respectively. The right-hand member of the last condition is $1 - \alpha$ instead of unity; see preceding footnote.