REMARKS ON FUNCTIONAL EQUATIONS.

BY MR. A. R. SCHWEITZER.

(Read before the American Mathematical Society, September 8, 1913.)

1. THE remarks of this article are in continuation of our paper in the BULLETIN, volume 19 (1912), pages 66-70. We have mentioned that a class of functional equations arises from the solution of the equation

(1)
$$\frac{\partial f(x, y)}{\partial x} + \mu(x, y) \frac{\partial f(x, y)}{\partial y} = 0,$$

where in particular we have assumed that $\mu(x, y) = \psi'(x)/\psi'(y)$. It is obvious that other classes of functional relations are obtained by considering the solution of the equation

$$\frac{dy}{dx} = \mu(x, y)$$

in connection with (1) when $\mu(x, y)$ is suitably specialized. The equation (1) may profitably be compared with another source of functional equations, that is, the equation*

(2) $\frac{\partial \varphi(x, y)}{\partial x} + \frac{\partial \varphi(x, y)}{\partial y} = \lambda(x, y).$

The following functional relation is derivable from (1) and admits an explicit solution:[†]

(1')
$$\psi(x) - \psi(y) = \Omega^{-1} \{ x \phi(y) - y \phi(x) \}.$$

This equation can be solved in another manner by noticing that $\phi(x)$ can be formally eliminated. The result is

(1")
$$\Omega\{x - y\} = \Omega(x)\psi_1^{-1}(y) - \Omega(y)\psi_1^{-1}(x),$$

where
$$\Omega(0) = 0, \quad \psi_1^{-1}(0) = 1,$$

$$\psi_1^{-1}(x) = \psi^{-1}\{x + \psi(1)\}.$$

^{*} Cf. V. Volterra, Acc. Lincei, vol. 19 (1910), pp. 169, 425; BULLETIN, vol. 19, p. 171; G. C. Evans, Proc. Cong. Math., Cambridge, 1913, vol. 1, p. 387; J. Hadamard, L'Enseignement Mathématique, vol. 14 (1912), p. 18, note; Paul Lévy, Paris thesis.

[†] Cf. BULLETIN, l. c., page 67.