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the motion of an infinite linear system of discrete masses, con-
nected by springs. The solution is obtained indirectly by a
limiting process from the solution for a finite number of
masses, and is then verified directly. The main features of the
oscillations of a given mass are interpreted in terms of familiar
properties of the Bessel functions of the time which occur as
coefficients.
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Introduction. The Generalized Fermat Theorem (A) in Purely
Arithmetic Phrasing (A, A”) with Extension (A"™). §§ 1-5.

. The theorem * in question is the followmg
(A) In the Galois field G'F[p"] of prime modulus p and of
rank n the two forms each of degree (p"*+V—1)/(p" — 1) in
the % + 1 indeterminates X, X, - -+, X,

k

D/c+1,n,p[)(0, Xl) ey Xk] = |X$aml (%J =0,1,.. " k)
PenolX Xp o0 X] =TI IIE + T 2X)

g=0, k& agylpr
are identical :

Dk+1,nm[Xo’ k] = L+1 np[ L Xk]

Here the qubscrlpt remark a,|p" indicates that the mark o, i
to run over the p" marks of ‘the Galois field GF[p"], and for
the case g = O the final >, _; does not enter.

For this theorem, whlc for (k, n) = (1, 1) is one form of
Fermat’s theorem, I have given three proofs, couched as is
the statement of the theorem in the abstract Galois field phras-
ing introduced by me in the paper ¢ A doubly-infinite system of
simple groups” presented to the Chicago Congress of 1893.

* Moore, ‘‘ A two-fold generalization of Fermat’s theorem,”” BULLETIN,
vol. 2 (1896), pp. 189-199.




