ON THE CONGRUENCE $x^{\phi(P)} \equiv 1$, MOD. P^n .

BY PROFESSOR JACOB WESTLUND.

(Read before the American Mathematical Society, August 31, 1903.)

1. Let $k(\theta)$ be any algebraic number field and P a prime ideal in $k(\theta)$. Then we know that every algebraic integer, which is prime to P, satisfies the congruence

$$(1) x^{\phi(P)} \equiv 1, \text{ mod. } P,$$

where $\phi(P) = n(P) - 1$, n(P) denoting the norm of P. The object of the present note is to determine the roots of the congruence

 $(2) x^{\phi(P)} \equiv 1, \text{ mod. } P^n,$

for n > 1.*

2. To determine the roots of (2) we introduce the function $q_n(\alpha)$, defined in the following way. Suppose that α be a root of

$$x^{\phi(P)} \equiv 1, \mod P^n$$

and let μ_n be an algebraic integer, divisible by P^n and by no higher power of P. Then we can find an algebraic integer, which we denote by $q_n(\alpha)$, such that

(3)
$$\alpha^{\phi(P)} \equiv 1 + \mu_n q_n(\alpha), \text{ mod. } P^{n+1}.$$

$$\alpha^{\phi(P)} = 1 + \pi,$$

where π is divisible by P^n , we should have

$$\pi \equiv \mu_n q_n(\alpha)$$
, mod. P^{n+1} ,

and

(4)
$$\frac{\gamma \pi}{\mu_n} \equiv \gamma q_n(\alpha), \text{ mod. } P,$$

if γ is an algebraic integer, prime to P, such that $\gamma \pi/\mu_n$ is an

^{*}For k(1) or the number field consisting of the rational numbers, see Bachmann: Niedere Zahlentheorie, p. 159.