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Consider those values of w that yield values of z for which
F(2) is defined, and for which then F(z) is a function of w.
These values of F(z) do not constitute an analytic function
of w; for the domain of values of w consists of two sepa-
rate continua. Thus the theorem, unrestricted, would be
false in this case. *
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TrE following treatment of Poisson’s integral in two
dimensions seems to the writer to have at least one advan-
tage over the treatments ordinarily given ; viz., that it in-
volves no artifice.

Given a function V(z, y) which within and upon the cir-
cumference of a certain circle C' is a continuous function of
(z, y) and within C is harmonic (¢. e., has continuous first
and second derivatives and satisfies Laplace’s equation).
By a well-known theorem of Gauss the value of V at the
centre (x,, y,) of C is the arithmetic mean of its values on
the circumference.t 'That is, if we denote by V, the values
of V on the circumference and by ¢ the angle at the centre,
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This theorem may be immediately generalized by the
method of inversion, if we remember on the one hand that
a harmonic function remains harmonic after inversion, and
on the other hand that angles are unchanged by inversion
and that circles invert into circles. We thus get the theo-
rem :

* Burkhardt has given simple examples of multiple-valued functions
for which the unrestricted theorem is false. See his book : ** Einfiihrung
in die Theorie der analytischen Functionen einer complexen Veridnder-
lichen,’’ vol. 1, Leipzig, 1897 ; p. 198.

1 An elementary proof of this theorem will be found in a paper by the
writer on p. 206 of the BULLETIN for May, 1895.



