3. A mark for each face, and a list of the edges and vertices in their order upon the boundary of each face.

Such a notation must contain a mark of distinction for the two sides of an edge; an easy matter if the direction of positive rotation be adopted uniformly in listing arrangements about the vertices and faces respectively.

These processes, and the proved existence of fundamental polygons, open a range of particular problems of considerable interest. But of even superior interest must be, at least until it is solved, the problem of finding a method for constructing, a priori, upon a given surface the exceptional (Davis) special reticulations whose characteristics are given by the restrictive tables.

NORTHWESTERN UNIVERSITY, April, 1898.

SYSTEMS OF SIMPLE GROUPS DERIVED FROM THE ORTHOGONAL GROUP.

BY DR. L. E. DICKSON.

1. In the February number of the BULLETIN I determined the order ω of the group G of orthogonal substitutions of determinant unity on m indices in the $GF[p^n]$ and proved that, for $p^n > 5$, p + 2, the group is generated by the substitutions

$$O_{i,j}^{\alpha,\beta}: \begin{array}{c} \xi_i' = a\xi_i + \beta\xi_j, \\ \xi_j' = -\beta\xi_i + a\xi_j, \end{array} (a^2 + \beta^2 = 1).$$

The structure of G was determined for the case p = 2. I have since proved[†] that for every m > 4 and every $p^n > 5$ of the form 8l + 3 or 8l + 5, the factors of composition of G

$$W = \begin{pmatrix} 1 & 2 & 2 & 2 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{pmatrix}, W^{3} = 1.$$

[†]A preliminary account was presented before the Mathematical Conference at Chicago, December 30, 1897.

^{*} The fact that $p^n = 3$ is an exception was not pointed out in the BUL-LETIN. In fact Jordan had not proven case 2° of § 211 when -1 =square, so that the case $a^2 = b^2 = c^2 = \ldots = 1$ was unsolved when p = 3, m = 3k + 1. The theorem is readily proven when $p^n = 3^n$, n > 1; but for $p^n = 3$ an additional generator is necessary and sufficient, viz.,