NOTE ON HYPERELLIPTIC INTEGRALS.

BY PROFESSOR ALEXANDER S. CHESSIN.

(Read before the American Mathematical Society at the Meeting of October 30, 1897.)

Let X_r denote a polynomial in x of degree r; $P_m(x)$, $Q_n(x), \dots$ polynomials in x of degrees m, n, \dots . We know that the integration of

$$\int f(x,\sqrt{X_r})\,dx,$$

where $f(x, \sqrt{X_r})$ is a rational function of x and $\sqrt{X_r}$, is reduced to the integration of

(1)
$$\int \frac{R(x)dx}{\sqrt{X_r}}$$

where R(x) is a rational function of x. This note is intended to give a practical rule for the integration of (1). Let

(2)
$$R(x) = \frac{P_m(x)}{\prod_{k=1}^{k=s} (x-a_k)^{n_k}}$$

We may assume that $P_m(x)$ has no factor $x - a_k$, otherwise the common factors may be cancelled. We also assume that all the factors of X_r are simple, for double factors could be taken outside the radical.

Suppose first that none of the a_k are roots of $X_r = 0$. Then we have the equality

(3)
$$\int \frac{P_m(x)dx}{\prod\limits_{k=1}^{k=s} (x-a_k)^{n_k} \sqrt{X_r}} = \frac{Q_p(x)\sqrt{X_r}}{\prod\limits_{k=1}^{k=s} (x-a_k)^{n-1}} + \sum_{k=0}^{k=r-2} \lambda_k \int \frac{x^k dx}{\sqrt{X_r}} + \sum_{k=1}^{k=s} \mu_k \int \frac{dx}{(x-a_k)\sqrt{X_r}}$$

where