ON THE INTRODUCTION OF THE NOTION OF HYPERBOLIC FUNCTIONS.*

BY PROFESSOR M. W. HASKELL.

The difficulties in the way of a satisfactory geometrical deduction of the fundamental formulæ of the hyperbolic functions seem to be due to the lack of a definition of these functions which shall be independent of the particular position of the argument area. A general definition of this kind can, however, readily be found in terms of the ratios of certain areas, instead of lines. From this definition the additiontheorem and other characteristics can be easily deduced by the methods of analytic geometry; and the definitions hold, furthermore, not merely for the rectangular, but for any hyperbola.
I. The circular functions. In order to bring out clearly the analogy with the circular functions, I will first indicate briefly how the latter would be defined according to this method.

In a circle of radius a (Fig. 1) let ϕ be the angle between the radii $O P$ and $O Q$, and let $O P^{\prime}$ be drawn perpendicular to

Fig. 1.

[^0]
[^0]: * Read before the American Mathematical Societty, December 28, 1894. For various geometrical definitions of these functions, see Professor A. Macfarlane's paper: "On the definition of the trigonometric functions," 1894.-EDITORs.

