Heterotic Kähler/non-Kähler transitions

Melanie Becker^{1,2}, Li-Sheng Tseng^{2,3} and Shing-Tung Yau³

¹George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A&M University, College Station, TX 77843, USA ²Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02138, USA ³Department of Mathematics, Harvard University, Cambridge, MA 02138, USA

Abstract

We show how two topologically distinct spaces — the Kähler $K3 \times T^2$ and the non-Kähler T^2 bundle over K3 — can be smoothly connected in heterotic string theory. The transition occurs when the base K3 is deformed to the T^4/\mathbb{Z}_2 orbifold limit. The orbifold theory can be mapped via duality to M-theory on $K3 \times K3$ where the transition corresponds to an exchange of the two K3's.

1 Introduction

Background geometry affects strings and point particles very differently. From the many well-studied string dualities, we know that string theories on different geometrical spaces can be dual, that is, identical up to some

e-print archive: http://lanl.arXiv.org/abs/hep-th/7064290v1