Stability of marginally outer trapped surfaces and existence of marginally outer trapped tubes

Lars Andersson1,2, Marc Mars3 and Walter Simon3

1Albert Einstein Institute, Am Mühlenberg 1, D-14476 Potsdam, Germany
2Department of Mathematics, University of Miami, Coral Gables, FL 33124, USA
3Facultad de Ciencias, Universidad de Salamanca, Plaza de la Merced s/n, E-37008 Salamanca, Spain

Abstract

The present work extends our short communication L. Andersson, M. Mars and W. Simon, Local existence of dynamical and trapping horizons, Phys. Rev. Lett. 95 (2005), 111102. For smooth marginally outer trapped surfaces (MOTS) in a smooth spacetime, we define stability with respect to variations along arbitrary vectors v normal to the MOTS. After giving some introductory material about linear non-self-adjoint elliptic operators, we introduce the stability operator L_v and we characterize stable MOTS in terms of sign conditions on the principal eigenvalue of L_v. The main result shows that given a strictly stable MOTS $S_0 \subset \Sigma_0$ in a spacetime with a reference foliation Σ_t, there is an open marginally outer trapped tube (MOTT), adapted to the reference foliation, which contains S_0. We give conditions under which the MOTT can be completed. Finally, we show that under standard energy conditions on the spacetime, the MOTT must be either locally achronal, spacelike or null.