CORRECTION

CENTRAL LIMIT THEOREMS FOR THE WASSERSTEIN DISTANCE BETWEEN THE EMPIRICAL AND THE TRUE DISTRIBUTIONS

BY EUSTASIO DEL BARRIO, EVARIST GINÉ AND CARLOS MATRÁN

The Annals of Probability (1999) 27 1009–1071

There is an error in Proposition 6.4 of our paper. It comes from a wrong expression for the covariance, $K(\rho)$, between $|Z_1|$ and $|Z_2|$, where (Z_1, Z_2) is a centered random vector with bivariate normal distribution such that $Var(Z_1) = Var(Z_2) = 1$ and $Cov(Z_1, Z_2) = \rho$. The formula for $K(\rho)$ should read

$$K(\rho) = \frac{2}{\pi} (\rho \arcsin \rho + \sqrt{1 - \rho^2} - 1), \qquad \rho \in [-1, 1],$$

[see, e.g., Nabeya (1951) or Wellner and Smythe (2002), Proposition 2]. Hence, using the notation in the proof of Proposition 6.4, $K(\rho) = K_1(\rho) + K_3(\rho)$. The core of that proof remains valid, except that we should drop the contribution of K_2 to the limit in (6.14). Consequently, Proposition 6.4 should be restated as follows.

PROPOSITION 6.4. Let Q be the quantile function of a random variable X in $DA_2(b_n)$. Assume X has regularly varying tails with exponent -2 and $\mathbb{E}X^2 = \infty$. Let B be a Brownian bridge and let G_n be as defined by (6.9). Then

(6.14)
$$\lim_{n \to \infty} \mathbb{E}G_n^2 = 1 - \frac{2}{\pi}(2 - \log 2).$$

This amendment carries over to Theorems 6.7 and 6.8. The limiting distribution (6.42) in Theorem 6.7 should be

(6.42)
$$\frac{Z_n - \gamma_n}{b_n} \xrightarrow{d} \sqrt{1 - \frac{2}{\pi} (2 - \log 2)} g.$$

Also, in this theorem, the dividing term $\alpha + 1$ in the expression for the constants b_n , case $\alpha = -1$, should be replaced by 1. This also occurs in Theorem 6.8, where, moreover, there is a factor of 2 missing [see (6.25) and (6.26)]. The correct statement for Theorem 6.8 is:

THEOREM 6.8. Let V(t), $t \in \mathbb{R}$, be a stationary Ornstein–Uhlenbeck process and let $\alpha \in [-2, \infty)$. Then:

Received September 2002.