CORRECTION

RANDOM WALK IN A RANDOM ENVIRONMENT AND FIRST-PASSAGE PERCOLATION ON TREES

By Russell Lyons and Robin Pemantle

The Annals of Probability (1992) 20 125-136

The proofs of Proposition 2 and of the first two parts of Theorem 3(ii) are incorrect, although the results themselves are correct. Here are correct proofs.

Proof of Proposition 2. Let Π_{n} be as indicated. Our assumption is that

$$
M:=\sup _{n} \mathbf{E}\left[\sum_{\sigma \in \Pi_{n}} C_{\sigma}^{x}\right]=\sup _{n} \sum_{\sigma \in \Pi_{n}} p^{|\sigma|}<\infty .
$$

Since $x \geq-1$, the inequality between the harmonic mean and the power mean of order x states that for positive numbers a_{n}, we have

$$
\left(\frac{1}{N} \sum_{n=1}^{N} a_{n}^{-1}\right)^{-1} \leq\left(\frac{1}{N} \sum_{n=1}^{N} a_{n}^{x}\right)^{1 / x}
$$

Take the x th power of both sides, use $a_{n}:=\sum_{\sigma \in \Pi_{n}} C_{\sigma}$ and the fact that $a_{n}^{x} \leq$ $\sum_{\sigma \in \Pi_{n}} C_{\sigma}^{x}$ since $0<x \leq 1$ to obtain

$$
\left(\frac{1}{N} \sum_{n=1}^{N}\left(\sum_{\sigma \in \Pi_{n}} C_{\sigma}\right)^{-1}\right)^{-x} \leq \frac{1}{N} \sum_{n=1}^{N}\left(\sum_{\sigma \in \Pi_{n}} C_{\sigma}\right)^{x} \leq \frac{1}{N} \sum_{n=1}^{N} \sum_{\sigma \in \Pi_{n}} C_{\sigma}^{x}
$$

Now take the expectation to arrive at the bound

$$
\mathbf{E}\left[\left(\frac{1}{N} \sum_{n=1}^{N}\left(\sum_{\sigma \in \Pi_{n}} C_{\sigma}\right)^{-1}\right)^{-x}\right] \leq \mathbf{E}\left[\frac{1}{N} \sum_{n=1}^{N} \sum_{\sigma \in \Pi_{n}} C_{\sigma}^{x}\right] \leq M .
$$

Fix $L>0$. By Markov's inequality, we may deduce that

$$
\begin{aligned}
\mathbf{P}\left[\sum_{n=1}^{\infty}\left(\sum_{\sigma \in \Pi_{n}} C_{\sigma}\right)^{-1} \leq L\right] & \leq \mathbf{P}\left[\sum_{n=1}^{N}\left(\sum_{\sigma \in \Pi_{n}} C_{\sigma}\right)^{-1} \leq L\right] \\
& =\mathbf{P}\left[\left(\frac{1}{N} \sum_{n=1}^{N}\left(\sum_{\sigma \in \Pi_{n}} C_{\sigma}\right)^{-1}\right)^{-x} \geq\left(\frac{N}{L}\right)^{x}\right] \\
& \leq M\left(\frac{L}{N}\right)^{x} .
\end{aligned}
$$

Received April 2002.

